丁香成人社-调教校花浣肠开菊-调教小龙女-调教小荡娃h-日韩三及片-日韩日日日

歡迎訪問紫外激光切割機、PCB激光切割機、ITO激光刻蝕機廠家,武漢元祿光電技術有限公司官方網站!

碳纖維復合材料皮秒激光切割工藝研究

發布時間:2024-01-31 來源:元祿光電

隨著能源及環境問題的日益突出,輕量化成為交通運輸領域的重要研究方向。碳纖維復合材料(carbon fiber reinforced plastics, CFRP)是由碳纖維作為增強體、樹脂作為基體固化成形的先進復合材料,因其比強度高、耐高溫、抗腐蝕等特點,在航空航天、汽車等領域作為輕量化材料被大量使用。由于CFRP增強體與基體性能的差異以及CFRP材料硬度高、韌性強等特性,采用傳統的機械加工方式出現如刀具易磨損、復合材料分層、纖維破碎及加工后性能變差等問題,嚴重制約CFRP的應用,CFRP的激光加工已成為目前研究的熱點。

由于CFRP中增強體在熱膨脹系數、氣化溫度等熱力學性能方面與基體存在相當大差異,在激光切割中表現出熱影響區(heat affected zone, HAZ)、纖維拔出、復合材料分層、纖維末端膨脹等缺陷,導致激光切割CFRP面臨巨大挑戰,在激光加工過程中產生的熱影響區嚴重影響CFRP的靜態強度。針對CFRP材料激光加工過程中的熱損傷問題,國內外學者進行了相關研究。LAU等人使用Nd:YAG激光光源與CO2激光光源分別對CFRP進行切割實驗,結果表明,短波長的Nd:YAG激光切割產生的切縫窄、熱損傷小。FENOUGHTY等人比較了Nd:YAG脈沖激光與連續激光對CFRP切割的影響,實驗表明,脈沖激光由于在相鄰脈沖作用時間間隔里能讓材料進行冷卻,相對連續激光可有效減少熱損傷。ZHANG等人研究了激光輻射過程中兩種纖維增強復合材料對激光的吸收特性,得到了激光參量對材料吸收率的影響。HUA等人利用單因素變量實驗方法,研究了毫秒脈沖激光工藝參量和水下切割方法對切割質量的影響,實驗表明:合理的工藝參量以及水下切割可有效減小纖維拔出等缺陷。NEGARESTANI等人研究了Nd:YAG脈沖激光切割CFRP過程中混合氣體對切割質量的影響。LEONE等人研究了Nd:YAG激光參量對CFRP材料切割質量的影響。STOCK等人的研究表明,激光能量進行多次施加可有效減小激光切割CFRP材料熱損傷效應。GOEKE等人研究了激光參量對CFRP材料切割熱影響區和切縫寬度的影響。SONG研究了激光切割參量對CFRP切割表面質量的影響,并對激光切割過程產生的熱影響區進行分析。WEBER等人模擬分析了工藝參量對熱損傷的影響。

本文中利用皮秒脈沖激光對CFRP進行燒蝕實驗,研究了工藝參量對CFRP去除過程中熱影響區及掃描深度的影響,得到優的工藝參量,在此基礎上對1.5mmCFRP板進行切割實驗。通過優化切割參量來提高切割質量,從而為皮秒激光切割CFRP學術研究與工業應用提供參考。

1.   實驗設備、材料及方法

1.1   實驗設備

實驗中采用的切割系統如圖 1所示。系統采用EdgeWavePX200-2-GM型皮秒激光器,通過3維掃描振鏡實現z方向動態聚焦,使用空氣作為輔助氣體,并通過氣刀作用于工件表面,氣體壓力為0.8MPa,實驗采用超景深3維顯微鏡觀測掃描深度和熱影響區。

 

Figure 1.  Scheme of cutting system

 

切割系統使用的激光波長為1064nm,脈寬為10ps,平均功率為100W,重復頻率為0.4MHz~20MHz,通過3維掃描振鏡聚焦后光斑直徑為50μm,振鏡高掃描速率為20m/s。切割系統具體參量如表 1所示。

Table 1.  Processing parameters

parameters

value

average power P

30W~100W

repetition rate frep

0.4MHz~20MHz

scanning speed vs

0.1m/s~20m/s

pulse duration τ

10ps

focus diameter d

50μm

wavelength λ

1064nm

 

顯示表格

1.2   實驗材料

實驗中采用碳纖維復合材料,其增強體為碳纖維T300,基體為環氧樹脂,各占50%,屬正交層合板(碳纖維鋪層的鋪設方向為90°),板厚為1.5mm,材料組成成分及熱力學性能如表 2所示。

Table 2.  Thermal and physical properties of the CFRP composite

parameters

type

carbon-fiber T300

epoxy resin

density ρ/(kg·m-3)

1.78

1.1

evaporation temperature Tv/K

4000

700

structure damage temperature Td/K

3100

440

heat conductivity κ/(W·m-1·K-1)

50

0.1

specific heat capacity c/(J·kg-1·K-1)

710

1884

 

顯示表格

1.3   實驗方法

實驗方法如圖 2所示。將1.5mmCFRP板置于激光焦平面上,分別研究平均功率、掃描速率、重復頻率、掃描次數對熱影響區及掃描深度的影響。為了更加均勻地去除整個碳纖維復合材料和提高去除效率,對軌跡進行多次循環掃描,并通過動態聚焦系統實現焦點補償。在切割中為了避免切縫過窄造成的遮蔽效應,掃描若干條間距為Δd的平行軌跡來增加切縫寬度,最終實現1.5mmCFRP切割。

 

Figure 2.  Illustration of scanning strategy

 

2.   實驗結果與分析

激光功率為60W、重復頻率為0.4MHz、掃描速率為4m/s時,CFRP表面產生的熱影響區如圖 3所示。從圖中可以看出,在切割過程中環氧樹脂基體材料回縮,而表層碳纖維增強體并未被去除而裸露出來形成熱影響區。這是因為環氧樹脂氣化溫度為700K,而碳纖維T300的氣化溫度為4000K,所以當激光能量不足夠使碳纖維氣化而僅僅只能使環氧樹脂氣化時,氣化的環氧樹脂被輔助氣體吹除,碳纖維保留在切縫兩側裸露出來形成熱影響區。

 

Figure 3.  Microscopy of the ablated region

 

2.1   工藝參量對熱影響區的影響

2.1.1   纖維排布方向對熱影響區的影響

在激光功率為60W、重復頻率為0.4MHz、掃描速率為1m/s時,CFRP表面熱影響區如圖 4所示。從圖中可以看出,CFRP表層纖維的排布方式對熱影區有顯著影響,當掃描方向與表層纖維排布方向垂直時,熱影響區達70μm;當掃描方向與纖維排布方向一致時,材料表面幾乎沒有熱影區。主要是因為碳纖維的熱傳導率遠遠大于環氧樹脂的熱傳導率,未能達到CFRP燒蝕閾值處的脈沖能量沿著碳纖維方向傳播,所以當掃描方向與表層纖維排布方向一致時,沿著掃描方向傳播的能量與下一個脈沖能量共同用于去除CFRP材料,掃描深度也更大,對切縫兩側造成熱影響區較小;而當掃描方向與表層纖維排布方向垂直時,能量沿著掃描垂直方向傳播,切縫兩側熱量累積,對CFRP造成熱損傷,導致嚴重的熱影響區。

 

Figure 4.  Effect of fiber orientation on heat affected zone

 

2.1.2   平均功率對熱影響區的影響

5是當重復頻率為0.4MHz、掃描速率為10m/s時,平均功率與熱影響區的關系。由圖 5可以看出,當平均功率增加時,熱影響區逐漸減小,隨著平均功率的繼續增加,熱影響區逐漸增大,最后趨于穩定。由于在重復頻率、掃描速率不變時,隨著平均功率的增加,單脈沖能量也增大,達到材料燒蝕閾值的能量也更多,激光脈沖能量更有效地用于CFRP的去除,有利于提高單脈沖能量的利用率,使得熱損傷相應的減小,從而熱影響區減小。然而,當功率過高時,去除材料后剩余的能量也越多,導致能量的積累越多,使得熱損傷相應的增加,從而熱影響區增大。由圖 5可知,當平均功率為60W時,此時熱影響區小,約為5μm

 

Figure 5.  Effect of average power on heat affected zone

 

2.1.3   重復頻率對熱影響區的影響

6是平均功率為60W、掃描速率為10m/s時,重復頻率與熱影響區的關系。在圖 6中,重復頻率為0.4MHz~5MHz時熱影響區與重復頻率幾乎成正比關系,隨著重復頻率的繼續增加,熱影響區增大并趨于平穩。主要是因為在平均功率、掃描速率不變時,隨著頻率增加,單脈沖能量減少,達到燒蝕閾值的能量也減少,所以脈沖能量用于CFRP的去除效率更低,使得熱損傷增大;另外,隨著頻率的增加,相鄰脈沖的時間越短,積累的熱量也越多,使得熱損傷相應的增加,從而熱影響區增大。

 

Figure 6.  Effect of repetition rate on heat affected zone

 

2.1.4   掃描速率對熱影響區的影響

7是在平均功率為60W、重復頻率為0.4MHz時,掃描速度與熱影響區的關系。為了更好地比較掃描速率對CFRP熱影響區的影響,實驗通過設置不同掃描速率下掃描次數與速率成正比來保證相同的能量輸入。由圖 7可知,隨著掃描速率的增大,熱影響區減小,當掃描速率大于10m/s時,隨著掃描速率的繼續增大,熱影響區保持在20μm左右。這主要是因為在掃描速率較低時,單位時間內獲得的能量大,在掃描過程中累積熱量多,導致嚴重的熱損傷,表現出熱影響區;而當掃描速率過大時,單位時間內獲得的能量小,能量對碳纖維材料去除效率低,使得熱損傷增大,導致熱影響區略有增大。由圖 7可知,當掃描速率為10m/s時,此時熱影響區小。

 

Figure 7.  Effect of scanning speed on heat affected zone

 

基于以上優化的工藝參量,在激光功率為60W、重復頻率為0.4MHz、掃描速率為10m/s時,CFRP邊緣表面的形貌如圖 8所示。由圖可以看出,邊緣表面熱影響區非常小。

 

Figure 8.  Microscopy of the edge of CFRP

 

2.2   循環掃描次數對材料去除的影響

為了得到合適掃描深度,探究了循環掃描次數對掃描深度的影響規律,在上述實驗的基礎上選擇合適的工藝參量:平均功率60W、重復頻率0.4MHz、掃描速率10m/s,選取循環掃描次數分別為3, 5, 10, 20, 50, 100進行實驗,通過超景深3維顯微鏡來測量其掃描深度和寬度。圖 9為掃描次數為20時切縫微觀形貌的分層設色圖。圖中顏色由灰色向黑色過渡表示掃描深度的增加,黑色表示掃描深度較大,由圖可以看出,此時掃描寬度為50μm左右,深度約為40μm。

 

Figure 9.  Microscopy of groove after laser ablating

 

10為掃描次數對掃描深度及熱影響區的影響規律,由圖可以看出,掃描深度隨著掃描次數的增加呈非線性增加,當掃描次數較少時,掃描深度增加得快,當掃描次數較多時,掃描深度增加得慢。這主要是因為隨著掃描次數的增加和切縫深度的增加,進入切縫內材料表面的激光能量越少,同時,隨著切縫深度的增加氣化的材料更難從切縫中飛濺出來,導致掃描深度的增加速度明顯減緩。熱影響區隨著掃描次數的增加有明顯的減小,主要是因為隨著掃描次數的增加,激光能量反復作用于切縫兩側的材料,之前熱影響區中的材料被進一步氣化去除掉,導致熱影響區明顯減小。由圖可以得出,在重復掃描次數為20時,熱影響區僅為10μm,材料去除深度為40μm左右,既可以得到較好的邊緣質量也能得到較高的去除效率。

 

Figure 10.  Relationship among groove depth, heat affected zone and the number of repeat

 

2.3   切割實驗

基于以上工藝參量的研究,對1.5mm厚的CFRP進行切割實驗。優化后的激光參量如下:平均功率為60W、重復頻率為0.4MHz、掃描速率為10m/s。每條軌跡重復掃描20次,軌跡重復掃描完以后,動態聚焦系統將激光焦點往下調整40μm,相鄰軌跡間距Δd=30μm,掃描10條平行軌跡,實現CFRP切割,最終得到切縫表面寬為350μm。

11a和圖 12a分別是在優化工藝參量下對1.5mm厚碳纖維板進行直線、圓孔切割的實驗結果;圖 11b和圖 12b分別是對切割后直線、圓孔邊緣放大圖。從圖 11和圖 12可以看出,切縫邊緣表面沒有纖維拔出現象,也沒有明顯的熱影響區,得到較好的切割質量。

 

Figure 11.  a—line cut in 1.5mm thick CFRP sample b—microscopy of the line cutting edge

 

 

Figure 12.  a—circle cut in 1.5mm thick CFRP sample b—microscopy of the circle cutting edge

 

為了進一步探究切割質量,對切割后的切縫截面進行放大觀察,如圖 13所示。從圖 13a可以看出,切縫表面沒有纖維拔出現象及明顯的熱影響區,但是切縫表面略有不平整,這是因為激光能量在空間上服從高斯分布,同時在重復頻率比較低且掃描速率較快的工藝參量下切割,使得切縫表面不平整。從圖 13b可以看出,切縫有一定的錐角,這是因為即使掃描過程中采用了動態聚焦系統,掃描靠近切縫兩側的軌跡時,激光遮蔽效應仍無法避免,導致進入下表面的激光能量少,對材料的去除效果差,形成了上表面寬下表面窄的切縫,從而切縫產生錐角。

 

Figure 13.  a—cut surface of the cutting edge b—cross section of the cutting edge

3.   結論

(1) 皮秒激光切割CFRP時,當切割方向與表層纖維排布方向垂直時,切縫兩側熱損傷嚴重;當切割方向與表層纖維排布方向一致時,切縫兩側無明顯熱影響區。

(2) 隨著平均功率的增加,熱影響區逐漸減小,平均功率為60W時,熱影響區小,隨著平均功率的繼續增加,熱影響區逐漸增大,最后趨于穩定;重復頻率為0.4MHz時,熱影響區小,熱影響區隨著重復頻率的增加而增大;熱影響區隨著掃描速率的增大逐漸減小,當掃描速率為10m/s時,熱影響區達到低值,隨著掃描速率的繼續增大,熱影響區保持在20μm左右;優化后的工藝參量為平均功率60W、重復頻率0.4MHz、掃描速率10m/s,平行軌跡間距Δd30μm,循環掃描次數為20,動態聚焦豎直位移為40μm。

(3) 掃描深度隨著掃描次數的增加呈非線性增加,而隨著掃描次數的增加熱影響區有一定的減小,當重復掃描20次時,可以保證熱影響區較小的同時有較高去除效率。

(4) 在優化的切割工藝參量基礎上,實現1.5mm厚碳纖維復合材料板高質量、高效率切割。

注明 文章出處:激光技術網 http://www.jgjs.net.cn/cn/article/doi/10.7510/jgjs.issn.1001-3806.2017.06.011

 

 


微信

手機站

地址:武漢市東湖技術開發區黃龍山北路6號

電話:135-4505-0045 售后服務:027-63496399

傳真:027-63496399 郵箱:wf@whlasers.com

主站蜘蛛池模板: 白白在线成人永久视频| 明星赵丽颖和外卖员的小说| 免费公开视频人人人人人人人| md传媒视频在线观看沈芯语| 久久成人免费观看全部免费| 日本不卡视频在线视频观看| chinese国产gay一| jizz国产精品jizz中国| 俄罗斯高清三级在线观看| 亚洲自拍偷拍区| 久操免费在线视频| 日本视频在线观看播放免费| 巨胸教师 冲田杏梨 在线| 欧美bbbbxxxxx| 办公室高h荡肉呻吟孕妇| 中国xxxx18免费| 欧美性69式xxxx护士| 美国xxxxxxxⅹ日本| www.四虎影视.com| 成人精品免费视频| 久久夜色精品国产鲁鲁ljk| 91国内揄拍国内精品对白| 自拍偷拍制服丝袜| 欧美a级片视频| 亚洲综合精品成人啪啪| 一区二区三区在线播放视频| 91丨porny丨首页| 日韩精品a| 综合小说图片| 996久久国产精品线观看导航| 欧美一区二区视频三区| 俄罗斯引擎中文入口网站| 日本高清视频www| 91色综合久久| 永久免费毛片在线播放| 美味的妻子在线观看| 老色鬼福利| yjizz国产精品视频| 欧美特黄a级高清免费大片| 久久伊人网视频| 98精品国产自在现线拍|